François Baccelli (ENS Paris)

ssimons

 

Résumé :

L’exposé portera sur les dynamiques déterministes sur des graphes aléatoires infinis. Une telle dynamique peut être vue comme un ensemble de règles de navigation sur les noeuds du graphe, qui sont des fonctions de la seule géométrie locale du graphe enraciné. Nous nous concentrerons sur des graphes aléatoires qui sont unimodulaires (vérifient les équations de transport de masse) et sur les règles de navigation qui sont covariantes (invariantes par isomorphismes de graphes enracinés).

Nous donnerons une classification de ces dynamiques basée sur les propriétés de leurs variétés stables. Cette classification est fondée sur l’identification d’une famille d’arbres aléatoires critiques dont les propriétés fondamentales seront présentées.

Ces notions seront illustrées par des exemples issus de la théorie des processus ponctuels, des processus de branchement, de la théorie des graphes aléatoires infinis et de celle des processus aléatoires.

Travail en collaboration avec M.-O. Haji-Mirsadeghi et A. Khezeli.