Catégorie : Petit amphithéâtre MIM, technopôle Metz

Orbit method and unipotent representations

Chengbo Zhu (National University of Singapore)

 

matzhucb

 

Abstract: A fundamental problem in representation theory is to determine the unitary dual of a given Lie group G, namely the set of equivalent classes of irreducible unitary representations of G. A principal idea, originated in a famous paper of A. A. Kirillov in 1962, is that there is a close connection between irreducible unitary representations of G and the orbits of G on the dual of its Lie algebra. This is known as the orbit method (or the philosophy of coadjoint orbits).

In this talk, I will describe basic ideas of the orbit method as well as a recent development on the problem of unipotent representations, which is to associate unitary representations to nilpotent coadjoint orbits and which is the hardest part of the orbit method. We solve this problem for real classical groups, by profitably combining analytic ideas of R. Howe on theta lifting and algebro-geometric ideas of D. A. Vogan, Jr. on associate varieties. This is joint work with J.-J. Ma and B. Sun.

The talk is aimed at a general audience of mathematicians and graduate students.

Almost homogeneous Schrödinger operators

Jan Derezinsky

(Université de Varsovie)

Abstract: First I will describe a certain natural holomorphic family of closed operators with interesting spectral properties. These operators can be fully analyzed using just trigonometric functions. Then I will discuss one- dimensional Schrödinger operators with inverse square potential and general boundary conditions, which I studied recently with S.Richard. Even though their description involves Bessel and Gamma functions, they turn out to be equivalent to the previous family.

Some operators that I will describe are homogeneous – they get multiplied by a constant after a change of the scale. In general, their homogeneity is weakly broken-scaling and induces a simple but nontrivial ow in the parameter space. One can say (with some exaggeration) that they can be viewed as « toy models of the renormalization group ».

Based on

• J.D. Laurent Bruneau and Vladimir Georgescu: Homogeneous Schrödinger operators on half-line, Annales Henri Poincaré 12 (2011), 547-590 ;

• J.D., Serge Richard: On Schrödinger operators with inverse square potentials on the half-line, Annales Henri Poincaré 18 (2017) 869-928;

• J.D.: Homogeneous rank one perturbations, to appear in Annales Henri Poincaré

Inégalités de Strichartz

Gilles Lebeau (Université de Nice)

505px-Gilles_Lebeau

 

Résumé de l’exposé. Dans l’article « Restriction of Fourier Transform to Quadratic Surfaces and Decay of Solutions of Wave Equations. Duke Math. Journal, 44, 1977 », R. Strichartz a introduit les inégalités qui portent son nom, pour résoudre certaines équations d’ondes non linéaires. Elles sont devenues un outil fondamental pour l’étude du problème de Cauchy pour les équations d’évolutions dispersives non linéaires (ondes, Schrödinger,…) et en analyse harmonique pour l’étude des estimations Lp des projecteurs spectraux. Nous présenterons ces inégalités, ainsi que des résultats récents (en collaboration avec R. Lascar, O. Ivanovici et F. Planchon) dans des domaines bornés, et certains problèmes ouverts.

De l’approche à l’équilibre thermodynamique : quels mécanismes dynamiques ?

Stéphane de Bièvre
(Université de Lille)

IMG_2705

Que les systèmes macroscopiques isolés tendent vers un état d’équilibre thermodynamique est une loi de base de la thermodynamique. Expliquer comment et pourquoi ceci se passe en termes de la dynamique sous-jacente des constituents de ces systèmes reste un problème difficile et largement ouvert et activement étudié. Après avoir posé le problème, je passerai en revue quelques résultats récents sur des systèmes modèle simples.

Institut Elie Cartan de Lorraine