Catégorie : Salle de conférences (Nancy) (Page 1 sur 11)

Assistants de preuve : un outil pour les mathématiciens ?

Sébastien Gouëzel

Unknown

Les assistants de preuve sont des outils informatiques qui permettent de formaliser et vérifier tous les détails d’une preuve. Alors qu’ils sont développés et utilisés depuis longtemps par des informaticiens (notamment pour prouver qu’un programme fait bien ce qu’il attend de lui), leur adoption par des mathématiciens est beaucoup plus récente. Je décrirai à travers mon expérience personnelle ce que ces outils permettent déjà de faire, notamment pour des résultats niveau recherche, mais aussi les difficultés que pose leur utilisation pour un mathématicien. Et j’espère aussi dissiper quelques fantasmes !

Dynamiques sur les graphes aléatoires unimodulaires.

François Baccelli (ENS Paris)

ssimons

 

Résumé :

L’exposé portera sur les dynamiques déterministes sur des graphes aléatoires infinis. Une telle dynamique peut être vue comme un ensemble de règles de navigation sur les noeuds du graphe, qui sont des fonctions de la seule géométrie locale du graphe enraciné. Nous nous concentrerons sur des graphes aléatoires qui sont unimodulaires (vérifient les équations de transport de masse) et sur les règles de navigation qui sont covariantes (invariantes par isomorphismes de graphes enracinés).

Nous donnerons une classification de ces dynamiques basée sur les propriétés de leurs variétés stables. Cette classification est fondée sur l’identification d’une famille d’arbres aléatoires critiques dont les propriétés fondamentales seront présentées.

Ces notions seront illustrées par des exemples issus de la théorie des processus ponctuels, des processus de branchement, de la théorie des graphes aléatoires infinis et de celle des processus aléatoires.

Travail en collaboration avec M.-O. Haji-Mirsadeghi et A. Khezeli.

Espaces de fréquences pour le groupe d’Heisenberg

Jean-Yves Chemin (Université Pierre et Marie Curie)

 

chemin-43

Résumé:  Dans le cas des groupes commutatifs, l’espace des fréquences, c’est-à-dire l’espace de la variable de Fourier est l’ensemble des caractères, ou l ‘une de ses paramétrisations. Dans le cas familier de l’analyse sur $\mathbf{R}^n$, il s’agit de l’ensemble des formes linéaires sur $\mathbf{R}^n$. Rien de tel dans le cadre des groupes non commutatifs où l’on doit utiliser les représentations. Après avoir rappeler les points essentiels de cette théorie,  nous expliquerons les problèmes qu’elle pose et définirons la transformation de Fourier comme fonction sur un espace métrique complet  singulier  explicite.

Primes in arithmetic progressions: The Riemann Hypothesis – and beyond!

James Maynard (University of Oxford)

260px-James_Maynard_MFO_2013

James Maynard est un théoricien des nombres, professeur à l’université d’Oxford. Il s’est fait connaître en donnant une nouvelle preuve du théorème de Zhang concernant l’infinité des paires de nombres premiers séparés d’une quantité bornée.

En 2016, il a résolu une conjecture d’Erdös sur les grands écarts entre nombres premiers. C’est la conjecture résolue pour laquelle Erdös avait offert le prix le plus élevé.

Abstract: One of the oldest problems about prime numbers is asking how many primes there are of a given size in an arithmetic progression. Dirichlet’s famous theorem shows that there are large primes in the progression unless there is an obvious reason why not, but more refined questions lead quickly to statements equivalent to versions of the Riemann Hypothesis, which unfortunately remains unsolved.

Rationalité des variétés algébriques

Olivier Debarre (ENS Paris)

etnaa

La définition de la rationalité d’une variété algébrique X définie sur un corps K peut être donnée de deux façons.

La première, géométrique, est de dire que la variété X est très proche d’être un space affine K^n, c’est-à-dire qu’on peut  paramétrer, de façon presque biunivoque, a variété X par K^n (ici, n est la dimension de X).

La seconde, algébrique, est de demander que le corps des fonctions rationnelles sur X soit une extension transcendante pure de K, isomorphe donc au corps des fractions rationnelles K(T_1,…,T_n)$ en n indéterminées.

La question de décider si une variété algébrique donnée (par exemple par des équations polynomiales) est rationnelle ou non est en général très difficile mais est plus accessible du point de vue géométrique.

Après avoir présenté des exemples classiques, je parlerai de résultats spectaculaires obtenus récemment sur le comportement de la rationalité dans une famille de variétés (X_t) (l’ensemble des t pour lesquels X_t est rationnelle est-il ouvert, fermé, etc. ?).

Matrices aléatoires – Quelques aspects

Djalil Chafaï (Université Paris-Dauphine)

Djalil-Chafai

Résumé : 

Cet exposé présente quelques aspects de l’étude de modèles de matrices aléatoires, notamment le comportement des valeurs propres en grande dimension. Un effort particulier est fait pour mettre en avant la structure et les méthodes, entre analyse, probabilités, et physique statistique.

 

Suites de Fibonacci aléatoires

Élise Janvresse (Université de Picardie)

elise

Résumé : Il est bien connu que les suites de Fibonacci croissent exponentiellement vite. En 2000, Viswanath a introduit les suites de Fibonacci aléatoires, définies par la relation de récurrence suivante :

F(n+1)= F(n)±F(n-1)

où le signe + ou – est donné par une suite de tirages à pile ou face.
Nous nous intéresserons dans cet exposé à la croissance des suites de Fibonacci aléatoires et de leurs généralisations.

 

Élise Janvresse est une spécialiste de théorie ergodique et probabilités. Après s’être intéressée au comportement asymptotique des systèmes de particules, son spectre scientifique s’est élargi aux suites de Fibonacci aléatoires, loi de Benford, marches aléatoires sur la sphère et le groupe orthogonal, applications au traitement d’images cérébrales, suspensions de Poisson et systèmes dynamiques en mesure infinie parmi d’autres sujets.

Elle est aussi une excellente vulgarisatrice, auteure de plusieurs livres, exposés grand public et articles dans de nombreux magazines.

Microlocal methods for chaotic dynamics

Maciej Zworski (University of California, Berkeley)

zworski_paris

Maciej Zworski est un spécialiste des aspects mathématiques de la mécanique quantique. Il s’intéresse en particulier à la théorie de la diffusion (scattering) et à l’analyse micro-locale.

Résumé : 

Dynamical zeta functions were introduced by Selberg, Artin–Mazur, Smale and Ruelle. The Ruelle zeta function is defined by replacing primes in the Euler product of the Riemann zeta functions by exponentials of lengths of closed trajectories. Zeta functions, once meromorphically continued, contain information about the distribution of these lengths, the rate of decay to equilibrium and about other properties of the system. Conjectured by Smale in 1967, the meromorphy was proved in 2012 by Giulietti–Liverani–Pollicott for Anosov flows and by Dyatlov–Guillarmou for a class of Axiom A flows in 2014. I will explain a simple microlocal proof of the Anosov case given with Dyatlov in 2013: the key components are a microlocal framework introduced by Faure–Sjöstrand 2011, radial propagation results of Melrose 1994, a trace formula of Atiyah–Bott 1967 and Guillemin 1977 and some basic wave front set properties.


As a more recent application I will present a result obtained with Dyatlov: for compact surfaces with Anosov geodesic flows, Ruelle zeta function at 0 has a pole of multiplicity given by the Euler characteristic. In articular, the lengths spectrum (the set of the lenghts of closed geodesics) determines the genus.

 

Une variété hyperbolique qui fibre sur le cercle

Nicolas Bergeron

DSC_0039

Résumé : En 1979 T. Jorgensen surprend les géomètres en construisant une variété hyperbolique de dimension 3 qui fibre sur le cercle. Trente trois ans plus tard I. Agol, répondant positivement à une question de W. Thurston et en se basant sur des travaux de D. Wise, démontre que toute variété hyperbolique de dimension 3 possède en fait un revêtement fini qui fibre sur le cercle.

Dans cet exposé je commencerai par construire une exemple explicite de variété hyperbolique de dimension 3 qui fibre sur le cercle, en suivant une idée de Thurston. La construction est élémentaire et peut être rendue complètement visuelle. L’exposé sera ainsi constitué d’une succession de petits films, réalisés avec Jos Leys. En commentant ces films j’essaierai d’expliquer comment certaines des idées derrière cette construction d’une variété hyperbolique fibrée sont à la base des travaux d’Agol et Wise.
L’exposé sera précédé du thé du laboratoire à 16h30 et pour ceux qui le souhaitent, il y aura un repas en ville (participation de 20€ par personne). Si vous souhaitez participer à ce repas, merci de me prévenir avant vendredi 16 à midi.

Simulation moléculaire et mathématiques

Tony Lelièvre

TonyPhare

Résumé : La simulation moléculaire consiste à modéliser la matière à l’échelle des atomes. En utilisant ces modèles, on espère obtenir des simulations plus précises et plus prédictives, et ainsi avoir accès à une sorte de microscope numérique, permettant de scruter les phénomènes moléculaires à l’origine des propriétés macroscopiques. Les perspectives applicatives sont innombrables: prédiction des structures des protéines, conception de nouveaux médicaments ou de nouveaux matériaux, simulation de la dynamique des défauts dans un matériau, etc. La simulation moléculaire occupe aujourd’hui une place importante dans de nombreux domaines scientifiques (biologie, chimie, physique) au même titre que les développements théoriques et les expériences.

Malgré la formidable explosion de la puissance des ordinateurs, il reste difficile de simuler suffisamment d’atomes sur des temps suffisamment longs pour avoir accès à toutes les quantités d’intérêt. Les mathématiques jouent un rôle fondamental à la fois pour dériver rigoureusement des modèles réduits moins coûteux, et pour analyser et améliorer des algorithmes permettant de relever les défis posés par les différences d’échelles en temps et en espace entre le modèle atomique et notre monde macroscopique.

L’objectif de l’exposé sera de présenter les modèles utilisés en dynamique moléculaire ainsi que quelques questions mathématiques soulevées par leur simulation.

Biographie de l’auteur : Tony Lelièvre est chercheur en mathématiques appliquées, professeur à l’Ecole des Ponts ParisTech et à l’Ecole Polytechnique. Il est membre de l’équipe Matherials (INRIA Paris). Ses recherches portent principalement sur l’analyse mathématique de modèles pour les matériaux, et des méthodes numériques associées. Il coordonne le projet ERC MsMath sur la simulation moléculaire.

Page 1 sur 11

Institut Elie Cartan de Lorraine